

VHP - L7042GSI S5

SLW_VHP_G1000_L6.3 engine out - S&L Standard LSA 52.2 VL60

36.54

S&L Energie-Projekte GmbH BH	0		Power Generation
ENGINE SPEED (rpm):	1000	NOx SELECTION (mg/Nm3):	Customer Catalyst
DISPLACEMENT (L):	115	COOLING SYSTEM:	JW, IC + OC
COMPRESSION RATIO:	9.7:1	INTERCOOLER WATER INLET (°C):	60
IGNITION SYSTEM:	ESM2	JACKET WATER OUTLET (°C):	82.2
EXHAUST MANIFOLD:	Water Cooled	JACKET WATER CAPACITY (L):	379
COMBUSTION:	Rich Burn, Turbocharged	AUXILIARY WATER CAPACITY (L):	42
ENGINE DRY WEIGHT (kg):	11000	LUBE OIL CAPACITY (L):	719
AIR/FUEL RATIO SETTING:	0.38% CO	MAX. EXHAUST BACKPRESSURE (mm H2O)	: 432
ENGINE SOUND LEVEL (dBA)	100.3	MAX. AIR INLET RESTRICTION (mm H2O):	381
IGNITION TIMING:	ESM2 Controlled	EXHAUST SOUND LEVEL (dBA)	92.6
FREQUENCY (Hz):	50	PHASE:	3
GENERATOR TYPE:	Synchronous	PHASE ROTATION:	T1-T2-T3
VOLTAGE:	6300	GEN. ROTATING MASS MOMENT OF INERTIA (kg m2):	74.5
SITE CONDITIONS:			
FUEL:	Erdgas H (Hamburg)	ALTITUDE (m):	75
FUEL PRESSURE RANGE (barG):	2.76 - 4.14	MAXIMUM INLET AIR TEMPERATURE (°C):	35
FUEL HHV (MJ/Nm3):	40.42	FUEL WKI:	93.3

FUEL HHV (MJ/Nm3): FUEL LHV (MJ/Nm3):

SITE SPECIFIC TECHNICAL DATA

	-				_		
SITE SPECIFIC TECHNICAL DATA			MAX RATING AT 38 °C				
POWER RATING		UNITS		AIR TEMP	99%	75%	50%
CONTINUOUS ENGINE POWER		kWb		1053	1040	790	530
OVERLOAD		% 2/24 hr		0	0	-	-
ELECTRICAL EFFICIENCY (LHV)		%		34.6	34.6	33.6	31.1
GENERATOR OUTPUT		kWe		1012	1000	760	510
GENERATOR KVA		kVA		1265	1250	950	638
GENERATOR CURRENT		Amps		116	115	87	59
based on 96.15% generator efficiency at 0.8 PF, no	auxiliary engine driven equipment						
FUEL CONSUMPTION							
FUEL CONSUMPTION (LHV)		kJ/kWh		10012	10015	10300	11123
FUEL CONSUMPTION (HHV)		kJ/kWh		11075	11078	11394	12304
FUEL FLOW	based on fuel analysis LHV	Nm3/hr		289	285	223	161
						<u> </u>	
						a= :	16-
JACKET WATER (JW)		kW		828	814	654	493
LUBE OIL (OC)		kW		104	104	95	84
INTERCOOLER (IC)		kW		98	91	47	16
EXHAUST		kW		747	742	567	402
RADIATION		kW		154	158	151	145
EMISSIONS (ENGINE OUT):							
NOx (NO + NO2)	corr. To 5% O2	mg/Nm3		4847	4865	4971	4843
CO	corr. To 5% O2	mg/Nm3		3722	3720	3763	3927
THC	corr. To 5% O2	mg/Nm3		277	277	334	401
NMHC	corr. To 5% O2	mg/Nm3		41	42	50	60
NM,NEHC (VOC)	corr. To 5% O2	mg/Nm3		4	4	5	6
CO2	corr. To 5% O2	g/Nm3		177	178	183	197
CO2e	corr. To 5% O2	g/Nm3		184	184	190	207
CH2O	corr. To 5% O2	mg/Nm3		20.54	20.54	20.54	20.54
CH4	corr. To 5% O2	mg/Nm3		235	236	284	341
AIR INTAKE / EXHAUST GAS							
INDUCTION AIR FLOW		Nm3/hr		2816	2783	2173	1575
EXHAUST GAS MASS FLOW		kg/hr		3944	3896	3043	2207
EXHAUST GAS FLOW	at exhaust temp, 100 kPa	m3/hr		10009	9887	7604	5435
EXHAUST TEMPERATURE		°C		572	572	559	547
HEAT EXCHANGER SIZING ¹²							
TOTAL JACKET WATER CIRCUIT (JW)		kW		939			
TOTAL AUXILIARY WATER CIRCUIT (IC +	OC)	kW		229			
COOLING SYSTEM WITH ENGINE MOU							
JACKET WATER PUMP MIN. DESIGN FLC		L/min	1457				
JACKET WATER PUMP MAX. EXTERNAL	RESTRICTION	barG	0.78				
AUX WATER PUMP MIN. DESIGN FLOW		L/min	250				
AUX WATER PUMP MAX. EXTERNAL RES	STRICTION	barG	1.74]			

SLW_VHP_G1000_L6.3 engine out - S&L Standard LSA 52.2 VL60 S&L Energie-Projekte GmbH BH

FUEL COMPOSITION

LSA 52.2 VL60	VHP - L7042GSI S5 Power Generation		
	FUEL: Erdgas FUEL PRESSURE RANGE (barG): FUEL WKI:	8 H (Hamburg) 2.76 - 4.14 93.3	

		- 1		EUEL Ender	- /)
HYDROCARBONS:	Mole or Ve				IS H (Hamburg)
Methane	CH4	94.46		FUEL PRESSURE RANGE (barG):	2.76 - 4.14
Ethane	C2H6	3.447		FUEL WKI:	93.3
Propane	C3H8	0.349			040.00
Iso-Butane	I-C4H10	0.064		FUEL SLHV (BTU/ft3):	912.99
Normal Butane	N-C4H10	0.049		FUEL SLHV (MJ/Nm3):	35.90
Iso-Pentane	I-C5H12	0.013			
Normal Pentane	N-C5H12	0.01		FUEL LHV (BTU/ft3):	929.16
Hexane	C6H14	0		FUEL LHV (MJ/Nm3):	36.54
Heptane	C7H16	0			
Ethene	C2H4	0		FUEL HHV (BTU/ft3):	1027.83
Propene	C3H6	0		FUEL HHV (MJ/Nm3):	40.42
	SUM HYDROCARBONS	98.392		FUEL DENSITY (SG):	0.59
NON-HYDROCARBONS:					
Nitrogen	N2	0.8		Standard Conditions per ASTM D3588-91 [60°F a	nd 14.696psia] and
Oxygen	O2	0		ISO 6976:1996-02-01[25, V(0;101.325)].	
Helium	He	0		Based on the fuel composition, supply pressure an liquid hydrocarbons may be present in the fuel. No	
Carbon Dioxide	CO2	0.804		hydrocarbons are allowed in the fuel. The fuel must	
Carbon Monoxide	CO	0		liquid water. Waukesha recommends both of the f	
Hydrogen	H2	Ő		 Dew point of the fuel gas to be at least 20°F (11 	
Water Vapor	H2O	Ő		measured temperature of the gas at the inlet of the	e engine fuel
	TIE O	0		regulator. 2) A fuel filter separator to be used on all fuels exc	cent commercial
	TOTAL FUEL	99.996		quality natural gas.	sopt commercial
	TOTALTOLL	00.000		Refer to the 'Fuel and Lubrication' section of 'Tech	
				contact the Waukesha Application Engineering De	
				additional information on fuels, or LHV and WKI* calculations. * Trademark of INNIO Waukesha Gas Engines Inc.	
FUEL CONTAMINANTS					
Total Sulfur Compounds		0	% volume	Total Sulfur Compound:	0 μg/BTU
Total Halogen as Cloride		0	% volume	Total Halogen as Clorid	0 μg/BTU
Total Ammonia		0	% volume	Total Ammonia	0 µg/BTU
<u>Siloxanes</u>				Total Siloxanes (as Si)	0 μg/BTU
Tetramethyl silane		0	% volume		
Trimethyl silanol		0	% volume		
Hexamethyldisiloxane (L2)		0	% volume	Calculated fuel contaminant analysis	will depend on
Hexamethylcyclotrisiloxane (D3)		0	% volume	the entered fuel composition and sele	
Octamethyltrisiloxane (L3)		0	% volume	model.	olou oligino
Octamethylcyclotetrasiloxane (D4	4)	0	% volume		
Decamethyltetrasiloxane (L4)	,	0	% volume		
Decamethylcyclopentasiloxane (I	25)	0	% volume		
Dodecamethylpentasiloxane (L5)		0	% volume		
Dodecamethylcyclohexasiloxane		0	% volume		
Others	(20)	0	% volume		
Ouldis		0			

No water or hydrocarbon condensates are allowed in the engine. Requires liquids removal.

SLW_VHP_G1000_L6.3 engine out - S&L Standard LSA 52.2 VL60 S&L Energie-Projekte GmbH BH

S&L LITEIGIE-FIDJERIE G

NOTES

1. All data is based on engines with standard configurations unless noted otherwise.

2. Power rating is adjusted for fuel, site altitude, and site air inlet temperature, in accordance with ISO 3046/1 with tolerance of ± 3%.

3. Fuel consumption is presented in accordance with ISO 3046/1 with a tolerance of -0 / +5% at maximum rating. Fuel flow calculation based on fuel LHV and fuel consumption with a tolerance of -0/+5%. For sizing piping and fuel equipment, it is recommended to include the 5% tolerance.

4. Heat rejection tolerances are ± 30% for radiation, and ± 8% for jacket water, lube oil, intercooler, and exhaust energy.

5. Emission levels for engines with Waukesha supplied 3-way catalyst are given at catalyst outlet flange. For all other engine models, emission levels are given at engine exhaust outlet flange prior to any after treatment. Values are based on a new engine operating at indicated site conditions, and adjusted to the specified timing and air/fuel ratio at rated load. Catalyst out emission levels represent emission levels the catalyst is sized to achieve. Manual adjustment may be necessary to achieve compliance as catalyst/engine age. Catalyst-out emission levels are valid for the duration of the engine warranty. Emissions are at an absolute humidity of 75 grains H2O/lb (10.71 g H2O/kg) of dry air. Emission levels may vary subject to instrumentation, measurement, ambient conditions, fuel quality, and engine variation. Engine may require adjustment on-site to meet emission levels are estimated. CO2 emissions based on EPA Federal Register/Vol. 74, No. 209/Friday, October 30, 2009 Rules and Regulations 56398, 56399 (3) Tier 3 6. Air flow is based on undried air with a tolerance of ± 7%.

7. Exhaust temperature given at engine exhaust outlet flange with a tolerance of \pm 50°F (28°C).

9. Exhaust temperature given at engine exhaust outlet hange with a tolerance of ± 30 T

8. Exhaust gas mass flow value is based on a "wet basis" with a tolerance of $\pm\,7\%$

9. Inlet air restrictions based on full rated engine load. Exhaust backpressure based on 140.6 PSI BMEP and 1000 RPM. Refer to the engine specification section of Waukesha's standard technical data for more information.

10. Cooling circuit capacity, lube oil capacity, and engine dry weight values are typical.

11. Fuel must conform to Waukesha's "Gaseous Fuel Specification" S7884-7 or most current version. Fuel may require treatment to meet current fuel specification.

Heat exchanger sizing values given as the maximum heat rejection of the circuit, with applied tolerances and an additional 5% reserve factor.
 Fuel volume flow calculation in english units is based on 100% relative humidity of the fuel gas at standard conditions of 60°F and 14.696 psia (29.92 inches of mercury; 101.325 kPa).

14. Fuel volume flow calculation in metric units is based on 100% relative humidity of the fuel gas at a combustion temperature of 25°C and metering conditions of 0°C and 101.325 kPa (14.696 psia; 29.92 inches of mercury). This is expressed as [25, V(0;101.325)].

15. Engine sound data taken with the microphone at 1 m (3.3 ft) from the side of the engine at the approximate front-to-back centerline. Microphone height was at intake manifold level. Engine sound pressure data may be different at front, back and opposite side locations. Exhaust sound data taken with microphone 1 meter (3.3 ft) away and 1 meter (3.3 ft) to the side of the exhaust outlet.

16. Due to variation between test conditions and final site conditions, such as exhaust configuration and background sound level, sound pressure levels under site conditions may be different than those tabulated above.

17. Cooling system design flow is based on minimum allowable cooling system flow. Cooling system maximum external restriction is defined as the allowable restriction at the minimum cooling system flow.

18. Continuous Power Rating: The highest load and speed that can be applied 24 hours per day, seven days per week, 365 days per year except for normal maintenance at indicated ambient reference conditions and fuel. No engine overload power rating is available.

19. emPact emission compliance available for entire range of operable fuels; however, fuel system and/or O2 set point may need to be adjusted in order to maintain compliance.

20. In cold ambient temperatures, heating of the engine jacket water, lube oil and combustion air may be required. See Waukesha Technical Data.

21. Available Turndown Speed Range refers to the constant torque speed range available. Reduced power may be available at speeds outside of this range. Contact application engineering.

SPECIAL REQUIREMENTS

Requires different thermostats for increased ICWT. Contact Application Engineering